FIBRE OPTIQUE MONOMODAL. FAIBLE RAYON DE COURBURE. G657A

SPÉCIFICATIONS DE RÉFÉRENCE

ITU-T G.652D recommendation ITU-T G.657A recommendation IEC-EN 60793-2-50 Cat. B.6.a.

DESCRIPTION ET APPLICATION

- Fibre optique monomodal à saut d'indice. Le revêtement est composé de SiO2 et le coeur de SiO2 + GeO2. Le revêtement est composé d'acrylate résistant aux rayons UV.
- Cette fibre offre des performances à faible pic d'eau (LWP), qui fournit une performance optimale à la fois à 1310 nm (deuxième fenêtre) et 1550 nm (troisième fenêtre), longueur d'onde avec une faible dispersion dans la fenêtre de 1310 nm, et performances de courbure pour les applications FTTH.
- Complètement compatible avec toutes les fibres monomodes classiques.
- Il s'agit d'une fibre à spectre complet conçu pour les systèmes de transmission optique opérant sur toute la gamme de longueur d'onde de 1260 nm à 1625 nm.

Tous les dessins, les spécifications et détails de poids, dimensions, etc. dans cette documentation ne sont qu'indicatifs et ne peuvent pas être considérées comme contractuelles.

FIBRE OPTIQUE MONOMODAL. FAIBLE RAYON DE COURBURE. G657A

CARACTÉRISTIQUES OPTIQUES			
PARAMÈTRE	VALEUR	UNITÉ	MÉTHODE D'ESSAI
Typ./Max. Affaiblissement linéique à 1310 nm (*)	0,34 / 0,35	dB/km	UNE-EN 188000-303 IEC 60793-1-40
Typ./Max. Affaiblissement linéique à 1383 nm (*)	0,28 / 0,31	dB/km	
Typ./Max. Affaiblissement linéique à 1490 nm (*)	0,21 / 0,24	dB/km	
Typ./Max. Affaiblissement linéique à 1550 nm (*)	0,19 / 0,21	dB/km	
Typ./Max. Affaiblissement linéique à 1625 nm (*)	0,20 / 0,24	dB/km	
Uniformité aff. (Point discontinuités à 1310 ou 1550 nm)	< 0,05	dB	
Longueur d'onde à dispersion nulle	$1302 < \lambda_0 < 1322$	nm	UNE-EN 188000-309
Pente de dispersion à λ_0 (S ₀)	≤ 0,092	ps/nm²·km	IEC 60793-1-42
Dispersion du mode de polarisation (PMD) (*)	≤ 0,1	ps/√km	IEC 60793-1-48
PMD de la liaison raccordée. (PMD _Q) (**)	≤ 0,06	ps/√km	
Longueur d'onde de coupure (fibre câblée)	λ _{cc} < 1260	nm	UNE-EN 188000-313

^{(*)(*)}Ce paramètre est sujet de changer une fois que la fibre soit câblée.

SENSIBILITÉ AUX MACRO-COURBIRES

PARAMÈTRE	VALEUR	UNITÉ	MÉTHODE D'ESSAI
100 tours sur un mandarin de 25,0 mm à 1550nm (*)	≤ 0,01	dB	
10 tours sur un mandarin de 15,0 mm à 1550nm (*)	≤ 0,05	dB	
1 tour sur un mandarin de 10,0 mm à 1550nm (*)	≤ 0,2	dB	
100 tours sur un mandarin de 25,0 mm à 1625nm (*)	≤ 0,5	dB	
10 tours sur un mandarin de 15,0 mm à 1625nm (*)	≤ 0,2	dB	
1 tour sur un mandarin de 10,0 mm à 1625nm (*)	≤ 0,5	dB	

^(*)Ce paramètre est sujet de changer une fois que la fibre soit câblée.

CARACTÉRISTIQUES GÉOMETRIQUES

CANACTERISTIQUES GEOMETRIQUES			
PARAMÈTRE	VALEUR	UNITÉ	MÉTHODE D'ESSAI
Diamètre de champ de mode à 1310 nm	8,9 ± 0,4	μm	UNE-EN 188000-315
Diamètre de champ de mode à 1550 nm	10,0 ± 0,5	μm	IEC 60793-1-45
Diamètre de la gaine	125 ± 0,7	μm	
Non circularité del gaine	< 1	%	IEC 60793-1-20
Erreur de concentricité Coeur-gaine	< 0,5	μm	
Diamètre de revêtement (non coloré)	240 ± 5	μm	IEC 60793-1-21
Erreur de concentricité gaine-revêtement	≤ 12	μm	1 IEC 00/93-1-21

AUTRES CARCATÉRISTIQUES

AUTRES CARCATERISTIQUES				
PARAMÈTRE	VALEUR	UNITÉ	MÉTHODE D'ESSAI	
Résistance à la traction ("Proof test")	≥1% (100kpsi / 0,7GPa)	%	IEC 60793-1-30	
Indice effectif de groupe à 1310 nm	1,467			
Indice effectif de groupe à 1550 nm	1,468			
Dénudabilité du revêtement (valeur de pic)	1,3 ≤ Fp ≤ 8,9	N	IEC 60793-1-32	

Tous les dessins, les spécifications et détails de poids, dimensions, etc. dans cette documentation ne sont qu'indicatifs et ne peuvent pas être considérées comme contractuelles.

