

Domaine d'utilisation*

INDUSTRIE LÉGÈRE

Caractéristiques techniques

Chaussure de sécurité.

Tige: croûte velours et mesh polyester aéré.

Doublure: textile. Languette: E.F.P.

Embout: anti-choc composite 200J. Première de propreté: EVA antistatique. Insert antiperforation: textile haute ténacité.

Semelle: injectée PU double densité.

Chaussure amagnétique.

Poids: 550 g (Poids moyen d'une chaussure, pointure 42).

Tailles: 36 à 47

Coloris: noir, gris et orange.

Conditionnement: carton de 10 paires. Sous-conditionnement: boîte individuelle.

Avantages

- > Convient à tous les utilisateurs avec un large choix de pointures.
- > Souplesse et protection grâce à l'insert antiperforation en textile haute ténacité.
- > Haute résistance grâce à l'embout anti-choc composite.
- > Chaussure de sécurité amagnétique.

Certification

Ce produit est conforme au Règlement (UE) 2016/425 relatif aux Equipements de Protection Individuelle (EPI). Catégorie II. Certifié par CTC (France), organisme notifié n°0075.

EN ISO 20345 S1-P SRC

Téléchargez la déclaration UE de conformité sur http://docs.singer.fr

NORMES		
EN ISO 20344	Équipement de protection individuelle: Méthodes d'essai pour les chaussures	
EN ISO 20345	Chaussures de sécurité: Embout contre les chocs (200 joules) et contre un écrasement de 15 kN.	
EN ISO 20346	Chaussures de protection: Embout contre les chocs (100 joules) et contre un écrasement de 10 kN.	
EN ISO 20347	Chaussures de travail: Aucune exigence concernant un éventuel embout.	

	RÉSISTANCE AU GLISSEMENT
SRA	Sur surface céramique enduite de détergeant de type industriel
SRB	Sur sol en acier lisse enduit de glycérine
SRC	SRA+SRB

	EN ISO 20345 - EXIGENCES OPTIONNELLES
Е	Talon absorbeur d'énergie
Р	Semelle anti-perforation
CR	Tige résistante à la coupure
M	Protecteur du métatarse contre les chocs
С	Chaussures conductrices
А	Chaussures antistatiques
HI	Semelle isolante contre la chaleur de contact
CI	Semelle isolante contre le froid
HRO	Semelage résistant à la chaleur de contact
WRU	Résistance de la tige contre l'absorption et la pénétration de l'eau
WR	Résistance à l'eau de la chaussure entière
I	Chaussures isolantes
AN	Protection des malléoles

CLASSE DES MATÉRIAUX UTILISÉS		
Classe I	Tout cuir ou autres matières (sauf tout caoutchouc ou tout polymère)	
Classe II	Tout caoutchouc (entièrement vulcanisés) ou tout polymère (entièrement moulés)	

EN 61340-4-3 - ELECTROSTATIQUE

Les chaussures répondant à cette norme sont dites "dissipatrices". Cette norme définit les chaussures qui permettent de protéger les équipements électroniques d'une décharge électrostatique. Résistance électrique: $< 1 \,\Omega \times 10^8$. Les chaussures antistatiques ne sont pas forcément ESD.

EN ISO 20345 - CLASSE DE LA CHAUSSURE				
SB	Classe I ou II	Propriétés fondamentales		
S 1	Classe I	Propriétés fondamentales + Arrière fermé + Propriété antistatique + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures		
\$2	Classe I	Propriétés fondamentales + Arrière fermé + Propriété antistatique + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures + Résistance à la pénétration d'eau + Résistance à l'absorption d'eau		
S 3	Classe I	Propriétés fondamentales + Arrière fermé + Propriété antistatique + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures + Résistance à la pénétration d'eau + Résistance à l'absorption d'eau + Résistance à la perforation + Semelle à crampons		
\$4	Classe II	Propriétés fondamentales + Arrière fermé + Propriétés antistatiques + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures		
S 5	Classe II	Propriétés fondamentales + Arrière fermé + Propriétés antistatiques + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures + Résistance à la perforation + Semelle à crampons		

	AVANTAGES
a	Résistance aux glissements
W.	Semelle à crampons
i dir	Résistance aux hydrocarbures
F	Propriétés antistatiques
200J	Embout de sécurité en composite (200J)
2001	Embout de sécurité en acier (200J)
1100N	Semelle antiperforation en textile haute ténacité (1100N)
1100N	Semelle antiperforation en acier (1100N)
	Résistance à la pénétration de l'eau
∑ _₹	Amortisseur au talon