## **JENBACHER**

# Jenbacher type 6

### **Cutting-edge technology**

Continuously refined based on our extensive experience, Jenbacher\* type 6 engines are reliable, advanced products serving the 2 to 4.5 MW power range. The 1,500 rpm engine speed provides high power density and low installation costs. The type 6 pre-combustion chamber enables high efficiency with low emissions. Proven design and enhanced components support a service life of 60,000 operating hours before the first major overhaul. The J624 model features the advanced 2-stage turbocharging technology, which offers high electrical efficiency combined with improved flexibility over a wide range of ambient conditions.



#### **Reference installations**

#### J616 & J620 BMW in Regensburg and Leipzig, Germany

| Fuel        | Engine type | Electrical output | Thermal output | Commissioning |  |  |
|-------------|-------------|-------------------|----------------|---------------|--|--|
| Natural gas | 4 x J616    | 10,700 kW         | 9,600 kW       | 2011          |  |  |
|             | 1 x J620    | 3,000 kW          | 3,120 kW       | 2007          |  |  |

The cogeneration plants installed at BMW Group\*\*'s factories in Regensburg and Leipzig can generate on-site power and capture and use engine waste heat to support the factories' production processes. Winter heating is obtained through a combination of the engines' waste heat and heat from existing boilers.



#### **J620** Coca-Cola Hellenic, Romania

| Fuel        | Engine type | Electrical output | ectrical output Thermal output C |      |
|-------------|-------------|-------------------|----------------------------------|------|
| Natural gas | 2 x J620    | 6,082 kW          | 2,208 kW                         | 2009 |
|             |             |                   |                                  |      |

Since 2009, two J620 engines have been supplying the Coca-Cola Hellenic Bottling Company with energy and heat, as well as hot and chilled water for its operations. By fulfilling the facility's on-site power needs, the installed engines help reduce the company's carbon footprint and lower its overall operational costs.



### J624 Hakha CES in Daejeon, South Korea

| Fuel        | Engine type | Electrical output | Thermal output | Commissioning |
|-------------|-------------|-------------------|----------------|---------------|
| Natural gas | 6 x J624    | 25,182 kW         | 25,350 kW      | 2014          |

With a total of six J624 engines running on natural gas, the Hakha, Daejeon site reaches a total of 25,182 kW of electrical output while achieving total efficiency of 87%. With the installation of these Jenbacher engines, the site has become one of the largest gas engine plants in South Korea.



## J624 2-stage turbocharged Serres Vinet Greenhouse in Machecoul, France

| Fuel        | Engine type                      | Electrical output | Thermal output | Commissioning |
|-------------|----------------------------------|-------------------|----------------|---------------|
| Natural gas | 2 x J624<br>2-stage turbocharged | 8,800 kW          | 8,024 kW       | 2011          |

At this greenhouse facility, two Jenbacher J624 2-stage turbocharged gas engines enable French grower Serres Vinet to generate all of the hot water and electricity required for its extensive tomato and lettuce greenhouse operations. These are the first 2-stage turbocharged gas engines in France and give Serres Vinet the flexibility to switch among the energy sources to either provide electrical energy and thermal energy as economics dictate.





# **JENBACHER**

### **Technical features**

| Feature                                                                                                             | Description                                                                                                        | Advantages  Reduced charge-exchange losses, highly efficient and stable combustion, optimal ignition conditions |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| Four-valve<br>cylinder head                                                                                         | Centrally located purged pre-combustion chamber, developed using advanced calculation and simulation methods (CFD) |                                                                                                                 |  |  |  |
| Flexible arrangement of heat exchanger, two stage oil plate heat exchanger on demand                                |                                                                                                                    | High thermal efficiency, even at high and fluctuating return temperatures                                       |  |  |  |
| r/fuel mixture parging  Fuel gas and combustion air are mixed at low pressure before entering the turbocharger      |                                                                                                                    | Main gas supply with low gas pressure, mixture homogenized in the turbocharger                                  |  |  |  |
| Pre-combustion chamber                                                                                              | The ignition energy of the spark plug is amplified in the pre-combustion chamber                                   | High efficiency, lowest NOx emission values, stable and reliable combustion                                     |  |  |  |
| Gas dosing valve  Electronically controlled gas dosing valve with high degree of control accuracy (for natural gas) |                                                                                                                    | Very quick response time, rapid adjustment of air / gas ratio, large adjustable calorific value range           |  |  |  |
| 2-stage turbocharging                                                                                               | Next generation turbocharging technology concept (for J624 only)                                                   | Improved performance in terms of output and efficiency, increased flexibility regarding ambient conditions      |  |  |  |

#### **Technical data**

| Configuration                                               |                                                                                                                                           |                    |                     | V 60°               |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|---------------------|--|--|
| Bore (mm)                                                   |                                                                                                                                           |                    |                     | 190                 |  |  |
| Stroke (mm)                                                 |                                                                                                                                           |                    |                     | 220                 |  |  |
| Displacement / cylinder (lit)                               |                                                                                                                                           |                    |                     | 6.24                |  |  |
| Speed (rpm)                                                 | 1,500 (50 Hz)<br>1,500 with gearbox (60 Hz)                                                                                               |                    |                     |                     |  |  |
| Mean piston speed (m/s)                                     | 11 (1,500 1/min)                                                                                                                          |                    |                     |                     |  |  |
| Scope of supply                                             | Generator set, cogeneration system, containerized package                                                                                 |                    |                     |                     |  |  |
| Applicable gas types                                        | Natural gas, flare gas, biogas,<br>landfill gas, sewage gas,<br>Special gases (e.g., coal mine gas,<br>coke gas, wood gas, pyrolysis gas) |                    |                     |                     |  |  |
| Engine type<br>No. of cylinders<br>Total displacement (lit) | J612<br>12<br>74.9                                                                                                                        | J616<br>16<br>99.8 | J620<br>20<br>124.8 | J624<br>24<br>149.7 |  |  |

| Dimensions I x w x h (mr | n)        |             |                |             |
|--------------------------|-----------|-------------|----------------|-------------|
| Containerined problems   | J612-J620 | 12,000/15,0 | 00 x 3,000/6,0 | 000 x 8,100 |
| Containerized package    | J624      |             | 17,000 x 6,00  | 00 x 8,400  |
|                          | J612      |             | 7,600 x 2,20   | 00 x 2,800  |
| Generator set            | J616      |             | 8,300 x 2,20   | 00 x 2,800  |
| - Concretor Set          | J620      |             | 8,900 x 2,20   | 00 x 2,800  |
|                          | J624      |             | 12,800 x 2,50  | 00 x 2,900  |
|                          | J612      |             | 7,600 x 2,20   | 00 x 2,800  |
| Cogeneration system      | J616      |             | 8,300 x 2,20   | 00 x 2,800  |
| Cogeneration system      | J620      |             | 8,900 x 2,20   | 00 x 2,800  |
|                          | J624      |             | 12,800 x 2,50  | 00 x 2,900  |
| Weights empty (kg)       | J612      | J616        | J620           | J624        |
| Generator set            | 24,000    | 29,200      | 36,900         | 52,100      |
| Cogeneration system      | 24,500    | 29,700      | 37,500         | 52,100      |
|                          |           |             |                |             |

Dimensions and weights are valid for 50 Hz applications

## **Outputs and efficiencies**

| Natural gas                        |      | 1,500 1/min   5       | 0 Hz                         | 1,500 1/min   60 Hz  |                   |                  |                       |                              |          |                   |                  |
|------------------------------------|------|-----------------------|------------------------------|----------------------|-------------------|------------------|-----------------------|------------------------------|----------|-------------------|------------------|
| NOx <                              | Туре | Pel (kW) <sup>1</sup> | η <b>el</b> (%) <sup>1</sup> | Pth(kW) <sup>2</sup> | η <b>th (</b> %)² | η <b>tot (%)</b> | Pel (kW) <sup>1</sup> | η <b>el</b> (%) <sup>1</sup> | Pth(kW)2 | η <b>th (%)</b> ² | η <b>tot</b> (%) |
| 500 mg/m <sup>3</sup> <sub>N</sub> | J612 | 2,017                 | 45.2                         | 1,930                | 43.3              | 88.2             | 2,000                 | 44.4                         | 1,941    | 43.6              | 88.0             |
|                                    | J616 | 2,689                 | 45.5                         | 2,527                | 42.9              | 88.4             | 2,662                 | 45.1                         | 2,541    | 43.2              | 88.3             |
|                                    | J620 | 3,360                 | 45.6                         | 3,172                | 43.0              | 88.6             | 3,328                 | 45.2                         | 3,186    | 43.2              | 88.4             |
|                                    | J624 | 4,502                 | 47.0                         | 3,752                | 39.2              | 86.2             | 4,457                 | 46.5                         | 3,790    | 39.4              | 85.9             |
|                                    | J612 | 2,017                 | 44.4                         | 1,936                | 42.7              | 86.8             | 2,000                 | 43.6                         | 1,947    | 42.9              | 86.6             |
| 050 / 3                            | J616 | 2,676                 | 44.7                         | 2,548                | 42.5              | 87.2             | 2,662                 | 44.3                         | 2,562    | 42.8              | 87.0             |
| 250 mg/m <sup>3</sup> <sub>N</sub> | J620 | 3,360                 | 44.8                         | 3,191                | 42.5              | 87.3             | 3,328                 | 44.4                         | 3,205    | 42.7              | 87.1             |
|                                    | J624 | 4,502                 | 45.9                         | 4,010                | 40.9              | 86.8             | 4,457                 | 45.5                         | 4,036    | 41.0              | 86.5             |

| Biogas     |      | 1,500 1/min           |                               | 1,800 1/min   60 Hz |                   |         |          |                               |                      |                   |                  |
|------------|------|-----------------------|-------------------------------|---------------------|-------------------|---------|----------|-------------------------------|----------------------|-------------------|------------------|
| NOx <      | Туре | Pel (kW) <sup>1</sup> | η <b>el (</b> %) <sup>1</sup> | Pth(kW)2            | η <b>th (%)</b> ² | ηtot(%) | Pel (kW) | η <b>e</b> l (%) <sup>1</sup> | Pth(kW) <sup>2</sup> | η <b>th (%)</b> ² | η <b>tot (%)</b> |
| 500 mg/m³, | J612 | 1,997                 | 44.3                          | 1,799               | 39.9              | 84.3    | 2,000    | 43.9                          | 1,825                | 40.5              | 83.9             |
|            | J616 | 2,676                 | 44.6                          | 2,399               | 39.9              | 84.5    | 2,662    | 44.2                          | 2,435                | 40.5              | 84.2             |
|            | J620 | 3,348                 | 44.6                          | 2,999               | 39.9              | 84.6    | 3,328    | 44.3                          | 3,029                | 40.5              | 84.3             |
|            | J612 | 1,817                 | 43.0                          | 1,717               | 40.6              | 83.6    | 1,798    | 42.5                          | 1,727                | 40.8              | 83.3             |
| 250 mg/m³, | J616 | 2,433                 | 43.1                          | 2,292               | 40.6              | 83.8    | 2,411    | 42.8                          | 2,305                | 40.9              | 83.6             |
|            | J620 | 3,044                 | 43.2                          | 2,863               | 40.6              | 83.8    | 3,022    | 42.9                          | 2,878                | 40.8              | 83.7             |

<sup>1)</sup> Technical data according to ISO 3046
2) Total heat output with a tolerance of +/- 8 %, exhaust gas outlet temperature 120°C, for biogas gas outlet temperature 180°C All data according to full load and subject to technical development and modification. Further engines versions available on request.





