FlexSEM 1000 II Specifications

	14	Beneristien	
Item		Description	
Model name		FlexSEM 1000 II	
Model No.		SU1000	
Secondary electron resolution ^{*1}		4.0 nm (Accelerating voltage 20 kV, WD = 5 mm, high-vacuum mode) 15.0 nm (Accelerating voltage 1 kV, WD = 5 mm, high-vacuum mode)	
Backscattered electron resolution ^{#1}		5.0 nm (Accelerating voltage 20 kV, WD = 5 mm, VP mode)	
		6x to 300,000x (magnification ratio of image ^{± 2}) 16x to 800,000x (magnification ratio of display ^{± 3})	
Aco	celerating voltage	0.3 kV to 20 kV	
Variable pressure range		6 to 100 Pa (13 steps)	
Image shift		± 50 μm(WD=10 mm)	
Maximum specimen size		80 mm in diameter	
	х	0 to 50 mm	
ø	Y	0 to 40 mm	
tag	Z	5 to 33 mm	
S L	- R	360°	
a l	т	-15° to +90°	
Specimen stage	n Maximum	64 mm in diameter (combined with Rotation)	
Š	observable range		
	Motor drive	3-axis (X, Y, R)	
E.	Electron gun	Precentered cartridge type tungsten hairpin filament	
ctron ics sys	Detecting system	Secondary electron detector, high-sensitivity semiconductive backscattered electron detector	
9 <u>6</u> 8	EDS analysis WD	WD=10 mm(T.O.A=30°)	
	Automatic axis alignment	Auto beam adjustment (AFS → ABA → AFC → ABCC), Auto optical axis alignment (current alignment), Auto beam brightness control	
mage display	Automatic image controller	Auto brightness & contrast control (ABCC), Auto focus control (AFC), Auto astigmatism correction & focus (ASF), Auto filament saturation (AFS), Auto sharm (IN-ON \rightarrow ABCC \rightarrow AFC) Auto start (IN-ON \rightarrow ABCC \rightarrow AFC)	
Image	Image saving	640 × 480 pixels, 1,280 × 960 pixels, 2,560 × 1,920 pixels, 5,120 × 3,840 pixels	
		BMP, TIFF, JPEG	
	Automatic data display	Image number, Accelerating voltage, magnification, micron marker micron value, WD value, date, time, vacuum level, detector	
	Image display mode	Main display: 1,280 \times 960, sub display: 640 \times 480 separate window of sub display: 1,280 \times 960	
Ę	Туре	Fully automatic valve system	
i erc	Turbo molecular pump	1 pump, 61 L/s	
8 2 8	Rotary pump*5	1 pump, 100 L/min (50 Hz), 120 L/min (60 Hz)	
Other function		Raster rotation, dynamic focus, image enhancement, data input (measurement between two points, measurement of angle, characters), preset magnification, stage location navigation system (SEM MAP), beam marking, Report creator	
Safety system		Protection function for the power failure, electric leakage	

Item	Description		
os	Microsoft® Windows®10 Pro 64bit		
CPU	Intel [®] Xeon [®] E3-1225 v5 with Intel HD Graphics PS30 or nigher compatible prosseor.		
On-board memory	8 GB or more		
Display resolution	1,920 × 1,080 pixels		
Memory device HDD, DVD-ROM drive			
Dimension & Weight			
Item	Description		
Main unit	450 (W) × 795 (D) × 690 (H) mm, 107 kg		
Power box	450 (W) \times 640 (D) \times 450 (H) mm, 58 kg		
Rotary pump	155 (W) \times 414 (D) \times 315 (H) mm, 22 kg		
Weight 160 (W) × 200 (D) × 134 (H) mm, 26 kg			
Installation requireme	nts		
Item	Description		
Temperature	15 to 30 °C		
Humidity	70% RH or less		
Power	Single-phase AC 100 to 240 V (±10%)		
Accessories			
Detector/various analyzers			
nergy dispersive X-ray	spectrometer (EDS)		
Jltra variable-pressure d	etector (UVD-II)		
Chamber scope			
Camera navigation syste	m		
Specimen stage/holder			
Multi sample holder			
Software			
SEM data manager			
Hitachi map 3D			
Multi Zigzag			
Control system			
rackball			
loystick			
Control panel			
1: When the main unit and powe	r box are connected. a display size of 127 mm × 95 mm (4 × 5 picture size). a display size of 509.8 mm × 286.7 mm (1,920 × 1,080 pixels).		

This logo is a registered trademark of Hitachi High-Technologies Corporation in Japan and other countries.

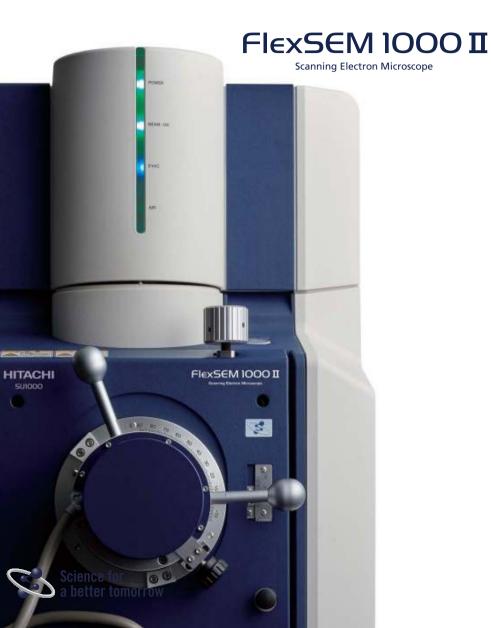
Notice: For correct operation, follow the instruction manual when using the instrument.

Specifications in this catalog are subject to change with or without notice, as Hitachi High-Technologies Corporation continues to develop the latest technologies and products for our customers. Copyright (C) Hitachi High-Technologies Corporation 2019 All rights reserved.

@Hitachi High-Technologies Corporation

Tokyo, Japan

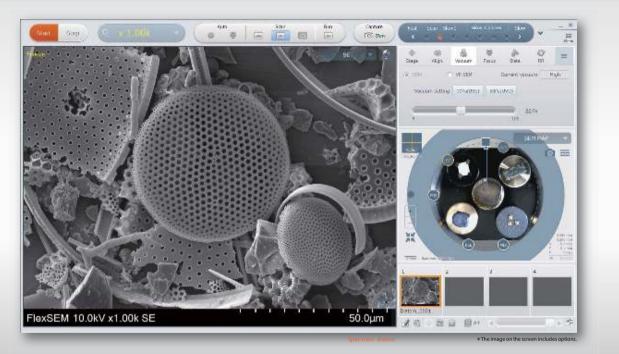
https://www.hitachi-hightech.com/jp/science/


24-14, Nishi-shimbashi,1-chome, Minato-ku Tokyo,105-8717, Japan

For technical consultation before purchase, please contact:contact@nst.hitachi-hitec.com

Scanning Electron Microscope

HITACHI Inspire the Next

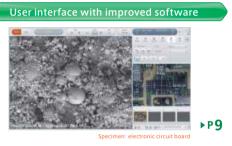


High performance in a compact system for various methods of observations

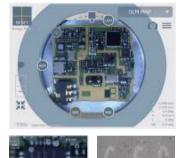
FlexSEM 1000 II

With the highest in-class resolution of 4 nm, the FlexSEM 1000 II offers user-friendly operation and sophisticated automatic functions for a wide range of users, from beginners to experts.

Easy to search a field of view	Searching a field of view intuitively by using the camera navigation system*	▶P11	Scanning Electron FIEXSEN 1000 II
Smooth operation	Improved observation throughput by easy operation	►P9	Maintenance Easy maintenance >P17
3D measurement	3D measurement by Hitachi map 3D*	►P8	Analytical function Wide area observation* and EDS analysis*
High image quality	Advanced performance in a compact body	►P5	Application gallery Observation examples in various fields >P13
Easy, Quick, and Compact	User support function provides prompt observation	►P3	Wide area observation Wide area observation


Multiple integrated features for intuitive operation.

Specimen holder



Extensive user operation support functions

Easy operation with use of camera navigation system*

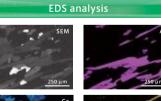
Specimen: electronic circuit board

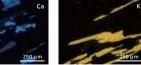
HE itit

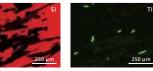
Generating reports easily with "Report Creator"

Simply select images and template to generate customize reports.

Compact design


A space and energy saving system with performance comparable to larger scanning electron microscopes

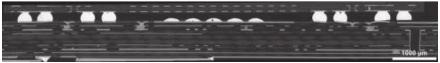



* Screen shows simulated imege.

52% more space saving (compared to SU1510) 45% lighter (compared to SU1510) Power source: 1 kVA (connect to outlet)

Upgradeable Options for various analytical needs

Magnification: 150x Specimen courtesy of Dr. Mamoru Adachi, the Nagoya University Museum


Three-Dimensional measurement by Hitachi map 3D

▶P11

Hitachi map 3D is a measurement and three-dimensional model display Parameters software package designed for Projected area the use with Hitachi SEM images. Volume of void Volume of materia % 88.3 Three-dimensional images can be 27741380 Volume of void nm³/µm² 10814105 generated without tilting the sample Volume of materia nm³/µm² 81350583 9972952 Mean thickness of voi nm 10.8 or worrying about image shift since 81.4 Mean thickness of m nm the Hitachi map 3D utilizes the directional signal from Hitachi's Specimen: microlens segmented guad BSE detector.

Wide area observation by image tiling (Zigzag Capture)

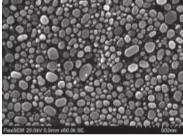
Zigzag Capture automatically moves the stage at pre-determined intervals to enable Multi-field acquisition.

Specimen: electronic component (prepared with ion milling)

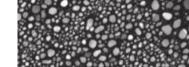
41.8

73.6 26.4

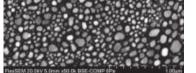
27.7


9.97

FlexSEM 1000 II


Compact and high-performance electron optics

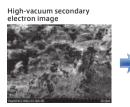
Equipped with a low-aberration objective lens, providing high resolution in a compact body.

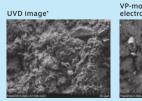

SE image resolution: 4.0 nm

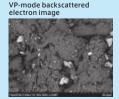
Accelerating voltage: 20.0 kV, Magnification: 60,000x

BSE image resolution: 5.0 nm

Accelerating voltage: 20.0 kV, Magnification: 50,000x, Vacuum: 6 Pa Specimen: evaporated Au particles

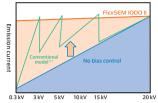

Non-conductive specimen observation

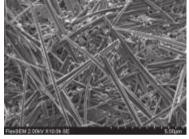

Observation of non-conductive specimens is available by using the VP mode with charge artifact reduction. High-contrast images are obtained due to improved sensitivity of the backscattered electron. Hitachi's ultra variable-pressure detector (UVD') generates a secondaryelectron-type image by detecting visible light excited by the electron-gas interaction.



Detection principle of high-sensitivity low-vacuum detector (UVD)

Charge artifacts can occur in high vacuum causing image distortion, such as image drift, extreme contrast changes, and other false information. However, by controlling the electrostatic charge on the specimen using VP mode, a clear observation of the specimen's surface structure is possible.



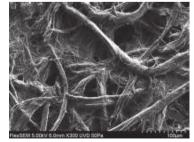

alcohol * Optional

High-contrast observation with the Beam Brightness system

"Beam Brightness" is a system to maintain high-emission current regardless of accelerating voltage. With this system, high-contrast images can be obtained continuously, even at low accelerating voltage levels.

Accelerating voltage: 2.0 kV, S Magnification: 10,000x Signal: secondary electron image

0 kV, Specimen: tablet candy on image


Accelerating voltage: 3.0 kV, Magnification: 500x Signal: UVD

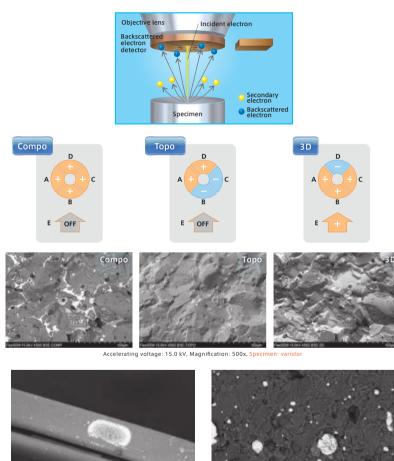
Specimen superabsorbent polymer

New generation ultra variable-pressure detector (UVD-II)*1

The UVD-II, a ultra variable-pressure detector with improved signal detection capability, provides a signal-to-noise ratio approximately 1.5 times higher than the previous-generation UVD.

Accelerating voltage: 5.0 kV, Magnification: 150x Signal: UVD-II

Accelerating voltage: 5.0 kV, Magnification: 300x Signal: UVD-II

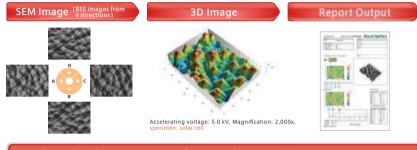

Specimen: paper filter

6

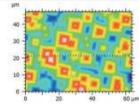
*1 Optional

High-sensitivity semiconductor backscattered electron detector

The semiconductor backscatter detector consists of five elements, enabling simultaneous signal collection from each segment. By changing their configuration, the detector takes images which emphasize composition information, shadow images which emphasize topographic information, and 3D images which emphasize both compositional and topographic information.


ResELM 1 2014 A Bren XI 504 BSE-COMP Accelerating voltage: 1.2 kV, Specimen: Photocatalytic fiber Magnification: 1,500x

Accelerating voltage: 3.0 kV, Magnification: 10,000x Al-Ni cor


```
Specimen:
Al-Ni composite material
```

3D surface reconstruction and height measurement of the specimen

Hitachi map 3D captures all four directional images simultaneously with a high-speed, segmented Backscattered Electron Detector (BSED), supports various measurements such as height, area, and volume as well as ISO-compliant surface roughness. Moreover, report data can be output to several formats including RTF (Word-compatible), PDF, STL format (3D printer compatible), and more.

Height and angle measurement of extracted cross-section

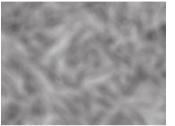
Main specifications

3D Image Capture(Three-Dimensional data capture func+on) Hitachi map 3D

Item	Description
Capture func+on	Automatic image data acquisition by Hitachi' segmented quad BSE detector
Capture pixel count	640x480, 1,280x960
Data capture +me (Scan speed)	10~320s

PC installation requirements

Item	Description	
Windows versions	Windows® 7, 8, .x 10(x64 or x32)	
Processor	Quadcore processor	
RAM memory	8 GB or more	
Graphic board	Open GL 2.0 or Direct 3D 9.0c	
HDD free space	800 MB or more	
Other	1 free USB port	

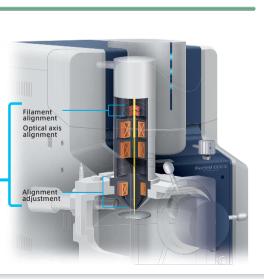

"Windows" is a registered trademark of Microsoo Corpora+on in the United States and other countries.


	Description	
Import function	Automatic select and read function of four segment BSE image data	
Measurement Performance	Measurement performance varies depending on calibration accuracy, the condition of the type of specimen, the observation mode, and the observation condition. Detectable angle range $\pm 60^\circ$ (reference)	
Measurement function	Measurement based on the ISO, JIS, ASME, EUR, and GB standards	
	Section profile display extracted between any area or the three dimensional image	
	Distance of X and Y, length and any angle measurement between two points, surface area, and volume	
	Distance of X, Y, and Z, length and many other measurement functions between 2 points specified on section profile	
	Simple profile and surface roughness measurements	
	Baseline (straight, curve), leveling, and multiple offsets	
	Cutting surface, Color contour line, Bird' s-eye view, and pseudo color display	
	Layout, templates, and image composition from multiple-image function	
Three-dimensional display function	Rotation, zoom-in, and multiple rendering processes. Animation video record function of observation screen	
Output function	Report/image: PDF, RTF/PNG, JPG, GIF, TIF, BMP, EMF	
	3D image/movie: SUR, 3MF, STL, WRL, TXT/X3D/WMV, AV	
	* Optiona	

Automatic image corrections which do not require an expert

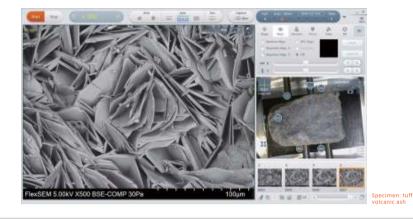
Improved high-speed automatic image correction algorithms shorten latency time by approximately 70% compared with conventional models⁺¹, realizing high-throughput data acquisition minimizing or eliminating various image adjustments.

Before adjustment


Specimen: tuff volcanic ash Specimen courtesy of professor emeritus Masahiro Kitada, Tokyo University of the Arts

FlexSEM 1000	2sec. 3sec.		
	ABCC Auto brightness and contrast control	AFC Autofocus	
Conventional model*1	Approx. 10 sec.	Approx. 8 sec.	

Auto axis alignment


Multiple alignments, including optical axis and gun alignments after filament replacement, are automatically controlled. This prevents misalignment of the optical axis or field of view and helps obtaining high-quality images repeatedly without relying solely on the user's skills.

> Auto beam adjustment

User interface with improved software

New graphical user interface supports touchscreen capability for all operations, including stage control and observation conditions. The size of the main window has been increased to 1,280 x 960 pixels, with the subwindow displaying our new navigation system, SEM MAP. SEM MAP visually displays stage location and confirms the current observation point with respect to the entire sample. Additionally, the subwindow can be switched from SEM MAP to display different signals, to be displayed and captured simultaneously.

Mouse-driven smart functions

RISM*

Function to center the region of interest by clicking any point on the live image.

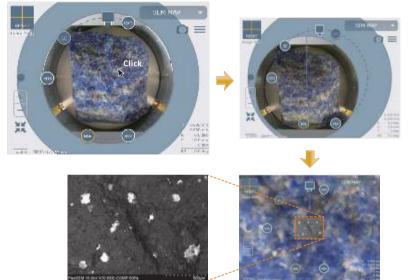
Click to move of the screen

Function to move the field of view by clicking and dragging any point on the live image.

*Rapid Image Shift Mode

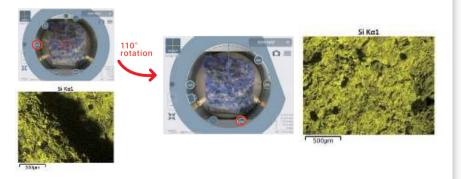
ZOOM

Click and drag over any point on the live image moves the field of view with the selected area to the center and increases the magnification automatically.


Specimen: electronic circuit board

Easy to search a field of view

Intuitive searching of a desired field of view by camera navigation system*


Easy to search a field of view with the integrated camera navigation system

Navigate to any location via SEM MAP and quickly reach your observation area simply by clicking on the optical image. The optical image from the built-in camera (or from an external source) can be zoomed in and out, or switched with a high-resolution SEM image.

Specimen: Janis Jazuli

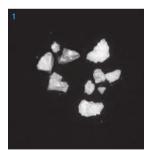
SEM MAP interface is designed to easily grasp the relationship between any of the SEM detectors and the specimen. All of the detector locations are indicated on the SEM MAP display, designating their position around the specimen as it is rotated.

Wide area observation

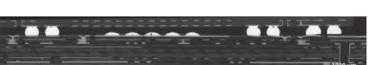
Wide area observation by Multi Zigzag*

Wide area observation of multiple areas on optical camera image or SEM image

Multi Zigzag (sequential field-of-view image capturing) is a function that generates a low-magnification image out of multiple high-magnification images taken with different fields of views. This enables wide-area observation with low-magnification/high-resolution images that are difficult to capture manually by using a SEM. In addition to the conventional Zigzag functions, multiple areas over multiple specimens can be defined in Multi Zigzag.




n



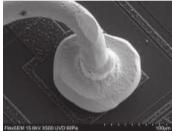
Signal: backscattered electron Specimen: mineral Number of images taken: 35 (7 vertically x 5 horizontally)

Signal: backscattered electron Number of images taken: 60 (10 vertically x 6 horizontally)

Deneral Party and the second s

Signal: backscattered electron Number of images taken: 54 (18 vertically x 3 horizontally) Milling unit: ArBlade®5000

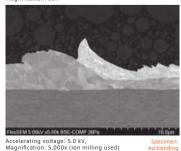
Specimen: electronic component

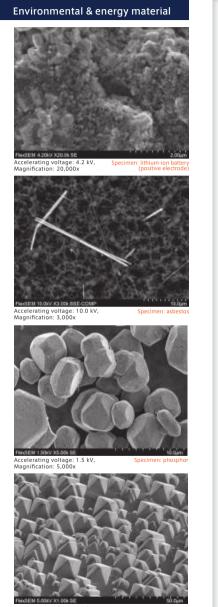

Application Examples (uncoated observation) Application gallery

FIEXSEM 1000 II

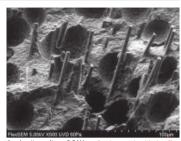

Electronic components

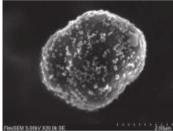
a blas a set	
	Statement and Advanced in the local division of the local division
-	
And Person in case of the local division of	No. of Concession, name
Flexisem to taky a to ak BSE-COMP	5.00jum
Accelerating voltage: 10.0 kV, Magnification: 10,000x	Specimen: semiconductor device


Accelerating voltage: 10.0 kV, Magnification: 10,000x

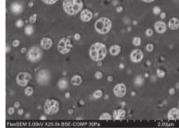

Accelerating voltage: 15.0 kV, Magnification: 500x(UVD used) Specimen: wire bonding

Accelerating voltage: 2.0 kV, Magnification: 50x

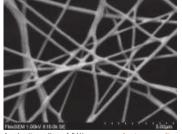

Accelerating voltage: 5.0 kV, Magnification: 5,000x (Ion milling used)


Accelerating voltage: 5.0 kV, Magnification: 1,000x Specimen: solar cell

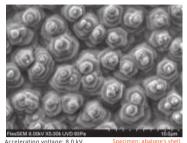
Polymer materials



Accelerating voltage: 5.0 kV, Magnification: 500x(UVD used) ©Akita Industrial Technology Center


Accelerating voltage: 5.0 kV, Magnification: 20,000x

Accelerating voltage: 5.0 kV, Magnification: 25,000x

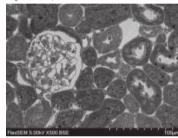

Accelerating voltage: 1.0 kV, Magnification: 10,000x Sample courtesy of Nafias corporation

13

14

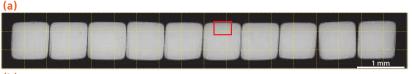
Application gallery Application Examples (Biological)

Life Science


Accelerating voltage: 8.0 kV, Magnification: 5,000x

Accelerating voltage: 3.0 kV, Specimen: Peyer's patch of small intestine Magnification: 150x Sample courtesy of associate professor Daisuke Koga, Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical College

Accelerating voltage: 5.0 kV, Magnification: 1,000x



Accelerating voltage: 5.0 kV, Magnification: 500x Specimen: kidney section a mouse (resin-embedde

Analytical function Wide area observation* and EDS analysis*

Smooth and quick analysis by using camera navigation system*

FlexSEM incorporates observation to analysis smoothly by using the camera navigation system in conjunction with EDS. Correlative results from the acquisition of high-resolution SEM images and mapping images from an ultra-wide area can be displayed.

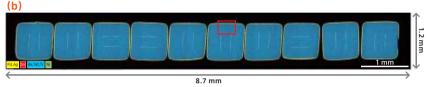
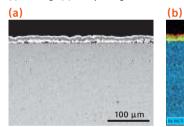




Figure 1: Result of wide area observation and analysis of cross-section of the ceramic capacitor (a) SEM image (b) EDS layer image

<u>100 µm</u>

Specimen: 10 ceramic capacitors EDS: AZtec Energy' Accelerating voltage: 15.0 kV Signal: backscattered electron image Magnification: 250x Number of images taken: 54 (18 horizontally x 3 vertically)

Figure 2: Enlarged image (a) SEM image (b) EDS layer image

Easy maintenance

Pre-centered filament cartridges which require no adjustment are included as standard. A step-by-step guide and automated axis-alignment function make for easy filament replacement.

Filament replacement

step 1 Press AIR button and wait until the chamber reaches atmosphere.

After the specimen chamber reaches atmosphere, wait 30 minutes in order to let the filament cool completely before removing it.

step 2 Open the electron gun and remove the filament.

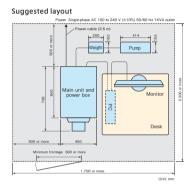
step 3 Replace the filament with a new one.

 Spacer that comes with cartridge filament must be installed.
 Clean if necessary.

step 4 Attach the filament and close the electron gun.

•Make sure that no dust enters the electron gun or inside the column.

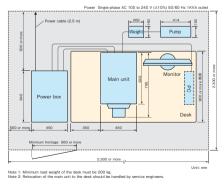
step 5 Set the calibration specimen.


step 6 Select a button for auto alignment or manual alignment.

Compact and flexible layout

Compact design that can be installed in small space. The main unit can be placed either on a power box or tabletop, and observation can be done as a part of routine work, without sitting down in a chair.

Main unit & power box combined



Main unit & power box separated

Suggested layout

