SPECTRORADIOMETER NEW # CS-3000 SERIES # Top-of-the-range spectroradiometer models that bring the latest digital technology together with Konica Minolta's long track record of sensor technology. # **High precision** CS-3000 Series models continue the tradition of outstanding optical design and signal processing technology of past models while providing the high precision needed for standard value measurement of displays and many other light sources. Even at low luminance levels, they enable precise noise-suppressed measurement over the entire measurement wavelength range with half width values of 5 nm or less as recommended by CIE (CIE 122-1996). In addition to CIE 1931 xy chromaticity, they can also guarantee accuracy at u'v' in the CIE 1976 UCS chromaticity diagram. Chromaticity measurement accuracy (at low luminance of 0.05 cd/m 2): x: ± 0.0015 , y: ± 0.001 / u': ± 0.0014 , v': ± 0.0006 # Wide dynamic range of measurement (CS-3000 HDR) Today's displays are constantly evolving to provide ever more vivid and high-quality output. To meet the measurement needs of these advanced devices, model CS-3000 HDR enables precise measurement at the 1° measurement angle often used in standard value measurements. It supports a wide dynamic range spanning ultra-low to high luminance levels. In addition to the LCD and OLED types commonly used today, it can measure standard values in HDR displays that use micro- or mini-LEDs. Luminance range with guaranteed accuracy (for luminance measurement at 1° measurement angle): 0.0001 to 100.000 cd/m² # 1°, 0.2°, 0.1° powered measurement angle switching (CS-3000, CS-3000 HDR) Any of three measurement angle settings can be selected to match the required measurement size. Powered switching supports command-based operation, enabling use in a fully automatic measurement system. # ■ Objective distances and measurement diameters (mm) | Objective | Measurement angle | | | | |-----------|-------------------|-------|-------|--| | distance | 1° | 0.2° | 0.1° | | | 350 | Ø5.00 | Ø1.00 | Ø0.50 | | | 500 | Ø7.78 | Ø1.56 | Ø0.78 | | | 1,000 | Ø16.66 | Ø3.33 | Ø1.67 | | | 2,000 | Ø34.18 | Ø6.84 | Ø3.42 | | ^{*} The objective distance is measured from the front end of the objective lens. # <Example measurement diameters for 500 mm objective distance> - 1°: Luminance/chromaticity standard value measurement at display center - 0.2°: Multipoint uniformity measurement - 0.1°: Edge measurement # **Reducing measurement time** Conventional spectroradiometers have been used for low-luminance sequence measurements such as display gamma measurement, low luminance uniformity measurement and display material I-V-L measurement. But conventional equipment can take several hours or longer to complete measurement, creating problems for production or quality control sites, or R&D work. The new functions below enable CS-3000 models to measure significantly faster. For example, gamma measurement can be completed in no more than 25%* of the time needed with conventional equipment. * Simulation conditions: 100 cd/m² (white); 0.1 cd/m² (black); 64 gradations; W γ measurement # <High-speed modes> Fast mode: Reduces measurement integration time to about 17% of the time needed in Normal mode. Super Fast 1 mode: Reduces measurement integration time to about 5% of the time needed in Normal mode. Super Fast 2 mode: Reduces measurement integration time to about 1% of the time needed in Normal mode. * These figures do not apply to model CS-2000 Plus. ## <Intelligent Dark function> Highly accurate spectroradiometers measurements can be achieved by measuring both the light source and dark current (dark value) for each data point, and using the difference between the measured values to cancel out the dark value variation. Dark value measurement is sometimes omitted to reduce measurement time, but the dark values may vary over time or in relation to other variables. In this case, the variation will be superimposed on the calculated light intensity values, reducing measurement accuracy. The Intelligent Dark function uses correction information from a sensor unit to correct for the variation, enabling faster measurement and preserving high accuracy without the need for dark value measurement. ## <Emission frequency detection/setting function> (CS-3000, CS-3000 HDR) A function that detects the display's emission frequency and sets the measurement integration time to an integral multiple of the detected value. Synchronization shifts (mismatches between measurement integration time and emission frequency) can lower repeatability. This function prevents these shifts with no increase in measurement time. # **Accessories for various applications; standard software** # ND filters CS-A40 (1/10) and CS-A41 (1/100) Externally mounted ND filters that come with calibration data. Used when measuring high luminance levels not supported by the built-in ND filter alone. Two types with different densities are available. Measurement luminance range with CS-A40 mounted: 0.005 to 50,000 cd/m² (With CS-3000 set to 1° measurement angle) Measurement luminance range with CS-A41 mounted: 0.05 to 500,000 cd/m² (With CS-3000 set to 1° measurement angle) ## Adapter for CCD camera CS-A36 An adapter used to attach a CCD camera (C mount type; sold separately) to the viewfinder unit. Screws onto the spectroradiometer and CCD camera. Focused by adjusting the focus ring. # **Closeup lens CS-A42** A closeup lens with calibration data used for small-diameter measurement close to the measurement objective. #### ■ Objective distances and measurement diameters (mm) | | Measurement angle | | | | |--------------------|-------------------|-------|-------|--| | Objective distance | | 0.2° | | | | 55.0 (minimum) | Ø1.00 | Ø0.20 | Ø0.10 | | | 70.9 (maximum) | Ø1.39 | Ø0.28 | Ø0.14 | | # Illuminance adapter CS-A43 An adapter that attaches to the lens unit to enable spectral irradiance measurement with a spectrum wavelength width of 5 nm or less, and accuracy conforming to Class AA general illuminance meter of JIS C 1609-1: 2006 (Illuminance Meters Part 1: General Measuring Instruments). The measurement illuminance range can be changed by changing the measurement angle setting on the spectroradiometer. Note that the adapter comes precalibrated as a set together with the spectroradiometer. Measurement illuminance range (With CS-3000 HDR in light source A spectrum) Spectroradiometer setting 1°: 0.01 to 1,400,000 lx 0.2°: 0.25 to 35,000,000 lx 0.1°: 1 to 140,000,000 lx Note that in practice, light source A measurement will have an upper limit of about 100,000 lx due to the effect of heat. # **Applications** In addition to applications such as TV and smartphone displays, the high-sensitivity, low-noise measurement design enables high-speed, high-precision measurements that use small measurement angles for applications such as microdisplays. Adapts well to vertical installation, with a focus lock function and a design that minimizes differences in measured values due to equipment orientation. Mounting the illuminance adapter (optional accessory) also enables use as a reference for projector measurement. * The standard software can be downloaded free of charge from the Konica Minolta website. Software downloads require input of customer information. # **Software for Spectroradiometer CS-S30** Software enabling CS-3000 Series models to perform computer-controlled measurement. Easy-to-read screen displays enable intuitive operation. Can be downloaded from the link below. https://www.konicaminolta.com/instruments/download/software/display/index.html #### <Features> Compatible with both Windows and Mac operating systems. Can set and execute a number of different measurement functions, and display graphs of measured values. Supports L*a*b* displays in addition to luminance/chromaticity and spectral graphs. As well as the usual CIE 1931 setting (2° Observer), also enables settings for CIE 1976 (10° Observer) and CIE 170-2:2015 (2° or 10° Observer). Chromaticity values can be calculated using user-specified color matching functions. #### [Main screen] # [u'v' graph] [L*a*b* graph] #### [Screen for setting measurement conditions] # <Operating environment requirements> $\textbf{Operating system:} \ \text{Windows} \ \text{@ 11 Pro 64bit, Windows} \ \text{@ 10 Pro 64bit, macOS} \ \text{@ Monterey, macOS} \ \text{@ Big Sur, macOS} \ \text{@ Catalina}$ * The required PC system configuration is the recommended configuration for the operating system above or the specifications below (whichever is more advanced). **CPU:** PC with a processor at least as advanced as the Intel® Core^{\mathbb{M}} i Series Memory: At least 8 GB **Hard disk:** At least 200 MB of free space. At least 100 MB of the hard disk's free space needs to be on the system drive (the drive where the operating system is installed). **Display:** Must support at least 1,280 × 768 pixel, 16 bit color display Other requirements: A USB port supporting at least USB 2.0 is needed for measuring instrument connection. An Internet connection is needed for software downloads. # **Series lineup** The CS-3000 Series consists of three models—the flagship CS-3000 HDR, standard CS-3000 and cost-performance CS-2000 Plus. The cost-performance model is an enhanced version of the CS-2000 model in the previous lineup. It adds a high-speed computational CPU and the Intelligent Dark function—a new algorithm that eliminates the need for dark value measurement without sacrificing accuracy or measurement time. # <Luminance measurement range with guaranteed accuracy (at 1° measurement angle)> #### | Features | CS-3000HDR | CS-3000 | CS-2000Plus | |---|--------------|--------------|-------------| | Data compatibility with CS-2000 Series | ✓ | ✓ | ✓ | | Intelligent Dark function | \checkmark | \checkmark | ✓ | | Emission frequency detection/setting function | √ | ✓ | | | Normal mode measurement time reduction | \checkmark | ✓ | | | Powered measurement angle switching | ✓ | ✓ | | # CIE 170-2:2015 CIE 170-2:2015 is a fundamental chromaticity diagram with physiological axes that was announced in 2015 by the International Commission on Illumination (CIE). When measuring displays with wide color gamuts, the use of CIE 170-2:2015 color matching functions is expected to yield results that more closely reproduce the human visual experience. # **CS-3000 Series Specifications** | CS-3000 | Series Specifi | | | | | |---|---------------------------------------|---------------------------|--|--|--| | | Measurement wave | Model
length range | | | | | | Wavelength re | solution | | | | | | Display waveleng
Wavelength p | | | | | | Spectrum wavelength width | | | | | | | | Measuremen | t angle | | | | | Minimum measurement diameter | | | | | | | Minimum objective distance | | | | | | | | Minimum radian
Minimum spectral ra | | | | | | Luminance range | with guaranteed accuracy | 7 | | | | | | ght source A) | | | | | | | | Accuracy*1 | | | | | Luminance
(Light source A) | | 1° | | | | | | Repeatability (2σ)*2 | 0.2° | | | | | | | 0.1° | | | | | Chromaticity
(Light source A) | | 1° | | | | | | Accuracy*1 | 0.2° | | | | | | | 0.1° | | | | | | | 1° | | | | | | Repeatability (2σ)*2 | 0.2° | | | | | | | 0.1° | | | | | | | ation error | | | | | | | ation time | | | | | Measurement
time | Com | tandalone
munication*3 | | | | | Color modes Color matching functions | | | | | | | Function for dete | cting/setting optical frequen | cy of measureme | | | | | | Measurement angle swi | tching | | | | | Operating temperature and humidity range | | | | | | | Storage temperature and humidity range Power supply | | | | | | | | Power consumptio | n | | | | | Size
Weight | | | | | | Weight *1: Average value of 10 measurements in Normal mode, at temperature of 23°C±2°C and maximum relative humidity of 65%. *2: For 10 measurements in Normal mode, at temperature of 23°C±2°C and maximum relative humidity of 65%. *3: Measurement time during USB cable-based communication with PC. Excludes time needed during measurement for shutter open/close operation and displaying results on LCD screen. *For items without conditions expressly indicated below, the standard Konica Minota conditions apply. | | CS-3000HDR | CS-3000 | CS-2000Plus | | | | | |---|--|--|---|--|--|--|--| | | | 380 to 780 nm | <u> </u> | | | | | | | | 0.9 nm/pixel
1.0 nm | | | | | | | | ±0.3 nm (cent | er-of-gravity wavelength mercury cadmium lamp: 435.8 nm, 54 | 16.1 nm, 643.8 nm) | | | | | | | | 5 nm max. (half width value)
1°, 0.2°, 0.1° | | | | | | | 1° | | Ø5 mm (Ø1 mm with closeup lens) | | | | | | | 0.2° | | Ø1 mm (Ø0.2 mm with closeup lens) | | | | | | | 0.1° | | Ø0.5 mm (Ø0.1 mm with closeup lens) 350 mm (55 mm with closeup lens) | | | | | | | | | 0.00002cd/m^2 | | | | | | | 1° | 0.0001 to 100,000 cd/m ² | 1.0 × 10 ⁻⁹ W/(sr·m²·nm)
0.0005 to 5,000 cd/m² | 0.003 to 5,000 | 0 cd/m ² | | | | | 0.2° | 0.0025 to 2,500,000 cd/m ² | 0.0125 to 125,000 cd/m ² | | 0 cd/m ² | | | | | 0.1° | 0.01 to 10,000,000 cd/m ² | 0.05 to 500,000 cd/m ² | 0.3 to 500,000 | 0 cd/m ² | | | | | | ±5% (0.0001 to 0.0004 cd/m ²)
±2% (0.0004 to 10,000,000 cd/m ²) | ±2% | ±2% | | | | | | 0.0001 cd/m ² | 5% | - | - | | | | | | 0.0004 cd/m ²
0.001 cd/m ² | 1.5%
0.7% | 1.5% (≥ 0.0005 cd/m²) | - | | | | | | 0.001 cd/m
0.003 cd/m ² | 0.7% | 0.7%
0.25% | 0.40% | | | | | | 0.05 cd/m ² | 0.15% | 0.15% | 0.3% | $(\ge 0.05 \text{cd/m}^2)$ | | | | | 0.0025 cd/m ² | 5% | - | 0.15% | (≥ 0.1 cd/m²) | | | | | 0.01 cd/m ² | 1.5% | -
1.5% (≥ 0.0125 cd/m²) | - | | | | | | 0.025 cd/m ² | 0.7% | 0.7% | - | | | | | | 0.075 cd/m ² | 0.25% | 0.25% | 0.40% | (- 1 25 · 1 / · ²) | | | | | .25 cd/m ² | 0.15% | 0.15% | 0.3% | (≥ 1.25 cd/m²)
(≥ 2.5 cd/m²) | | | | | 0.01 cd/m ² | 5% | - | - | (= 2.0 00/111) | | | | | 0.04 cd/m ² | 1.5% | 1.5% (≥ 0.05 cd/m²) | - | | | | | | 0.1 cd/m ²
0.3 cd/m ² | 0.7%
0.25% | 0.7%
0.25% | 0.40% | | | | | | 5 cd/m ² | 0.15% | 0.15% | 0.3% | (≥5 cd/m²) | | | | | 7 64, 111 | 0.1370 | 0.1370 | 0.15% | (≥ 10 cd/m²) | | | | | 2.001 - 1/ 2 | x :±0.002 | x :±0.002 | x :±0.003 y :±0.003
u':±0.0033 v':±0.0016 | $(\ge 0.003 \text{ cd/m}^2)$
$(\ge 0.003 \text{ cd/m}^2)$ | | | | | 0.001 cd/m ² | u':±0.0022 v':±0.0011 | u':±0.0022 v':±0.0011 | x :±0.002 y :±0.002 | (≥ 0.005 cd/m ²) | | | | | | x :±0.0015 | x :±0.0015 y :±0.001 | u':±0.0022 v':±0.0011
x:±0.0015 y:±0.001 | (≥ 0.005 cd/m²) | | | | | 0.05 cd/m ² | u':±0.0013 y :±0.001
u':±0.0014 v':±0.0006 | u':±0.0013 y .10.001
u':±0.0014 v':±0.0006 | u':±0.0013 y :±0.001
u':±0.0014 v':±0.0006 | | | | | | | V 140 002 V 140 002 | v +40 003 | x :±0.003 | $(\ge 0.075 \text{ cd/m}^2)$
$(\ge 0.075 \text{ cd/m}^2)$ | | | | | 0.025 cd/m ² | x :±0.002 | x :±0.002 y :±0.002
u':±0.0022 v':±0.0011 | x :±0.002 y :±0.002 | (≥ 0.125 cd/m²) | | | | | | | | u':±0.0022 v':±0.0011 | (≥ 0.125 cd/m ²) | | | | | .25 cd/m ² | x :±0.0015 | x :±0.0015 y :±0.001
u':±0.0014 v':±0.0006 | x :±0.0015 y :±0.001
u':±0.0014 v':±0.0006 | | | | | | | | | x :±0.003 y :±0.003 | $(\ge 0.3 \text{ cd/m}^2)$ | | | | |).1 cd/m ² | x :±0.002 | x :±0.002 y :±0.002
u':±0.0022 v':±0.0011 | u':±0.0033 v':±0.0016
x:±0.002 y:±0.002 | $(\ge 0.3 \text{ cd/m}^2)$
$(\ge 0.5 \text{ cd/m}^2)$ | | | | | | 4 1200022 7 1200011 | 4 . 2010022 | u':±0.0022 v':±0.0011 | $(\ge 0.5 \text{ cd/m}^2)$ | | | | | 5 cd/m ² | x :±0.0015 | x :±0.0015 y :±0.001
u':±0.0014 v':±0.0006 | x :±0.0015 y :±0.001
u':±0.0014 v':±0.0006 | | | | | | 0.001 cd/m ² | x : 0.0030 | x : 0.0030 | u .10.0014 V .10.0000 | | | | | | J.001 CQ/III | u': 0.0024 v': 0.0014 | u': 0.0024 v': 0.0014 | 0.002 | | | | | | 2 202 - 1/ - 2 | x: 0.0010 y: 0.0015 | x : 0.0010 y : 0.0015 | x: 0.002 y: 0.002
u': 0.0016 v': 0.0008 | | | | | | 0.003 cd/m ² | u': 0.0009 v': 0.0006 | u': 0.0009 v': 0.0006 | x: 0.001 y: 0.001 | (≥ 0.005 cd/m²) | | | | | 24.1/2 | x: 0.0006 y: 0.0006 | x : 0.0006 y : 0.0006 | u': 0.0008 v': 0.0004
x: 0.0006 y: 0.0006 | (≥ 0.005 cd/m²) | | | | | 0.1 cd/m ² | u': 0.0005 v': 0.0002 | u': 0.0005 v': 0.0002 | u': 0.0005 v': 0.0002 | | | | | | 0.2 cd/m ² | x: 0.0004 y: 0.0004
u': 0.0003 v': 0.0002 | x: 0.0004 y: 0.0004
u': 0.0003 v': 0.0002 | x: 0.0004 y: 0.0004
u': 0.0003 v': 0.0002 | | | | | | 0.025 cd/m ² | x: 0.0030 y: 0.0035 | x : 0.0030 y : 0.0035 | _ | | | | | | 1020 00, 111 | u': 0.0024 v': 0.0014 | u': 0.0024 v': 0.0014 | x : 0.002 y : 0.002 | | | | | | 0.075 cd/m ² | x: 0.0010 y: 0.0015 | x : 0.0010 y : 0.0015 | u': 0.0016 v': 0.0008 | | | | | | 7.073 GU/ III | u': 0.0009 v': 0.0006 | u': 0.0009 v': 0.0006 | x: 0.001 y: 0.001 | $(\ge 0.125 \text{ cd/m}^2)$
$(\ge 0.125 \text{ cd/m}^2)$ | | | | | D. F. and / m. ² | x: 0.0006 y: 0.0006 | x : 0.0006 y : 0.0006 | u': 0.0008 v': 0.0004
x: 0.0006 y: 0.0006 | (∠ U.1∠5 CC/ M) | | | | | 2.5 cd/m ² | u': 0.0005 v': 0.0002 | u': 0.0005 v': 0.0002 | u': 0.0005 v': 0.0002 | | | | | | 5 cd/m ² | x: 0.0004 | x: 0.0004 y: 0.0004
u': 0.0003 v': 0.0002 | x: 0.0004 y: 0.0004
u': 0.0003 v': 0.0002 | | | | | | 0.1 cd/m ² | x: 0.0030 y: 0.0035 | x: 0.0030 y: 0.0035 | - | | | | | | | u': 0.0024 v': 0.0014 | u': 0.0024 v': 0.0014 | x : 0.002 y : 0.002 | | | | | | 0.3 cd/m ² | x : 0.0010 y : 0.0015 | x: 0.0010 y: 0.0015 | u': 0.0016 v': 0.0008 | | | | | | | u': 0.0009 v': 0.0006 | u': 0.0009 v': 0.0006 | x: 0.001 y: 0.001
u': 0.0008 v': 0.0004 | $(\ge 0.5 \text{ cd/m}^2)$
$(\ge 0.5 \text{ cd/m}^2)$ | | | | | 0 cd/m ² | x: 0.0006 y: 0.0006 | x : 0.0006 y : 0.0006 | x : 0.0006 y : 0.0006 | (= 0.0 cu/III) | | | | | o cu/ III | u': 0.0005 v': 0.0002
x: 0.0004 y: 0.0004 | u': 0.0005 v': 0.0002
x: 0.0004 y: 0.0004 | u': 0.0005 v': 0.0002
x: 0.0004 y: 0.0004 | | | | | | 0 cd/m ² | u': 0.0003 v': 0.0002 | u': 0.0003 v': 0.0002 | u': 0.0003 v': 0.0002 | | | | | | | | (400 to 780 nm) at 1° setting; 3% max. (400 to 780 nm) at 0.2° (| | | | | | | | 0.005 to 92 seconds (Normal mode) 0.005 to 120 seconds (Normal mode) 0.005 to 16 seconds (Fast mode) 0.005 to 16 seconds (Fast mode) | | | | | | | | | Minimum of 1 second | or less (Manual mode) to | Minimum of 1 second or less (Manual mode) to | | | | | | | approx. 190 seconds (Normal mode) or maximum of approx. 242 seconds (Manual mode) maximum of approx. 242 seconds (Normal or Manual mode) CS-3000HDR, CS-3000: Approx. 0.07 second | | | | | | | | | CS-2000Plus: Approx. 0.08 second | | | | | | | | | | when Manual mode, 33.333 ms and Intelligent Dark function ar
y, Lvu′v′, LvT∆uv, XYZ, spectrograph, main wavelength, excitatic | | | | | | | | | y, Lvuʻvʻ, Lv1Δuv, XYZ, spectrograph, main wavelength, excitation
E 170-2:2015 (2°, 10°), user-specified color matching functions | | | | | | | bjective | , | Yes | No | | | | | | | Pov | wered USB 2.0; RS-232C | Manual | | | | | | | 5 to 30°C, 80% RH m | nax. (no condensation) | 5 to 35°C, 80% RH max. (no c | ondensation) | | | | | | 0 to 35°C, 80% RH max. (no condensation) | | | | | | | | | | Dedicated AC adapter (100 to 240 V, 50/60 Hz) | | | | | | | | | Dedicated AC adapter (100 to 240 V, 50/60 Hz) Approx. 20 W | | | | | | #### **System diagram** # **Dimensional drawings (mm)** The CS-3000 Series complies with the EMC (electromagnetic compatibility) mandated by Europe's EMC Directive and South Korea's Radio Waves Act. Series models are environmentally friendly products conforming to European RoHS Directives* restricting the use of designated hazardous substances and to other environmental regulations (such as Europe's REACH regulation and China's RoHS regulation). * European RoHS Directives: Directive 2011/65/EU and Commission Delegated Directive (EU) 2015/863 - KONICA MINOLTA, the KONICA MINOLTA logo and symbol, and the "Giving Shape to Ideas" slogan are trademarks or registered trademarks of Konica Minolta, Inc. Windows® is a trademark or registered trademark of Microsoft Corporation in the US and other countries. Bluetooth® is a registered trademark of Bluetooth SiG, inc. and is used under license. Screenshots are partly composites with inserts. The specifications and product appearance shown here may be changed without notice. # SAFETY PRECAUTIONS Be sure to read the instruction manual carefully beforehand to ensure safe and proper use of the product. Only connect the product to a power supply of the designated voltage Connection to the wrong power supply may result in fire or electric shock | KONICA MINOLTA, INC. | Osaka, Japan | | | | | | |--|--|--|---|---|-------------|--| | Konica Minolta Sensing Americas, Inc. | New Jersey, U.S.A. | | PHONE: | (888)473-2656 (in USA)
+1(201)236-4300 (outside USA) | Contact Us: | | | Konica Minolta Sensing Europe B.V. | European HQ / BENELUX
German Office
French Office
UK Office
Italian Office
Swiss Office
Nordic Office
Polish Office
Turkish Office | Nieuwegein, Netherlands
München, Germany
Roissy CDG Cedex, France
Warrington, United Kingdom
Cinisello Balsamo, Italy
Dietikon, Switzerland
VÄSTRA FRÖLUNDA, Sweden
Wrocław, Poland
Istanbul, Turkey | PHONE: | +31(0)30 248-1193
+49(0)89 4357 155 0
+33(0)1 80 11 10 70
+44(0)1925 467300
+39(0)2 84948800
+41(0)43 322-9800
+46(0)31 7099464
+48(0)71 73452-11
+99(0)215-528 56 56 | Contact Us: | | | Konica Minolta (CHINA) Investment Ltd. | SE Sales Division
Beijing Office
Guangzhou Office
Chongqing Office
Qingdao Office
Wuhan Office
Shenzhen Office | Shanghai, China
Beijing, China
Guangzhou, China
Chongqing, China
Shandong, China
Hubei, China
Shenzhen, China | PHONE:
PHONE:
PHONE:
PHONE:
PHONE:
PHONE:
PHONE: | +86-(0)21-6057-1089
+86-(0)10-8522 1551
+86-(0)20-3826 4220
+86-(0)23-6773 4988
+86-(0)532-8079 1871
+86-(0)27-8544 9942
+86-(0)755-2868 7535 | Contact Us: | | | Konica Minolta Sensing Singapore Pte. Ltd. | Singapore | | PHONE: | +65 6563-5533 | Contact Us: | | | Konica Minolta Sensing Korea Co., Ltd. | Korean HQ / Kintex Cheonan Office | Goyang-si, Korea
Cheonan-si, Korea | PHONE: | +82(0)2-523-9726
+82(0)41-556-9726 | Contact Us: | | Addresses and telephone numbers are subject to change without notice. For the latest contact information, please refer to KONICA MINOLTA Worldwide Offices web page: https://konicaminolta.com/instruments/network © KONICA MINOLTA, INC. 9242-ADPN-41 CDCDK 2